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a b s t r a c t

An analytical model is proposed for the evolution of ellipsoidal pores by surface diffusion under the influ-
ence of large temperature gradients and the associated thermoelastic stress field. It is found that both of
these influences affect the migration velocity of a pore as well as its shape. The shape of a pore is deter-
mined by competition between the thermoelastic stress field, the interfacial energies of the pore and
grain boundaries, and the kinetics of the mass transport process. The dramatic case of void migration
in a uranium dioxide nuclear fuel rod is considered, in which very large temperature gradients of the
order of 4 � 105 K/m are predicted. It is found that crack-like pores are expected to form on the radial
grain boundaries prevalent in the fuel rod microstructure, and that these crack-like pores lead to the
eventual structural failure of the component. This agrees with experimental observations. The tempera-
ture gradient is the dominant driving force for the migration of near-spheroidal and prolate pores,
whereas the stress field is the dominant driving force for oblate crack-like pores.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Heat transport through porous media has been the subject of
much attention [1–3]. In the majority of studies it is assumed that
the pores are of a fixed size, shape and position within the medium.
In this paper, however, an analysis of heat and mass transport in a
temperature gradient by the translational movement and morpho-
logical change of pores is presented. The medium of interest is ura-
nium dioxide, from which fuel rods used in nuclear power reactors
are manufactured. Large amounts of heat are generated within
these rods during fission. The centre of the rod experiences high
temperatures (up to 2000 K) with much lower temperatures at
the outside of the rod. The low thermal conductivity of uranium
dioxide leads to the development of very large temperature gradi-
ents (up to 4 � 105 K/m [4]) which provide a strong driving force
for the migration of pores. Large stresses are also generated within
the fuel rods due to this non-uniform temperature distribution and
these can also play a role in the rearrangement of material [5]. Ini-
tially the cylindrical fuel pellets have a uniform, equiaxed, fine-
grained microstructure with randomly distributed pores of about
1 lm in radius [6]. The formation of gaseous products during ser-
vices can also lead to the development of sub-micron pores. A
cross-section of a midservice uranium dioxide fuel rod is shown
in Fig. 1 [6]. Tikare and Holm [6] identified five regions in this
microstructure. Region 1 is a very large central void running the
length of the rod, which is assumed to be due to the coalescence
of pores which have migrated up the thermal gradient towards
ll rights reserved.
the centre of the rod. Taking the radius of the rod to be R, this cen-
tral void is approximately defined if the radial distance from the
centre, r, satisfies r < 0.3R. Region 2 (0.3R < r < 0.7R) consists of a
highly columnar grain structure in which the grain boundaries
are predominantly radial in nature. Lenticular pores are observed
at the ends of the columnar grains, as shown in the inset in
Fig. 1. It is also evident in this region that there are a large number
of radial cracks which have propagated though the sample. Some
have propagated all the way through the fuel rod and some only
extend a lesser distance from the central void, indicating that this
is the site of their initiation. These cracks will be discussed further
in the light of predictions about the migration of pores in Section 4.
Region 3 (0.7R < r < 0.85R) contains enlarged equiaxed grains with
a uniform distribution of pores, indicating some grain growth but
little net pore migration. The microstructure in region 4
(0.85R < r < R) is similar to the initial pre-service microstructure,
indicating that the temperatures in this region were not sufficient
for evolution to occur. The outer region 5 represents the steel clad-
ding placed around the fuel rod. This is preserving the overall
structural integrity of the rod given the level of cracking observed.
It is the aim of this paper to explain these observations so that
microstructures can be optimised to avoid these high levels of voi-
dage and cracking.

In this paper, a model for pore migration based on a novel var-
iational formulism [7] is constructed in Section 2. This assumes
that the pore migrates and changes shape by surface diffusion.
There are a number of simultaneous driving forces for these pro-
cesses, namely the temperature gradient, the associated thermo-
elastic stress field, and the free surface energy of the pore and
the interfacial energy attributed to the grain boundaries. The
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Nomenclature

a0 the radius of a spherical pore of an equivalent volume
a shape parameter for ellipsoidal pore, defined by Eq. (1)
m shape parameter for ellipsoidal pore, defined by Eq. (21)
rT remote temperature gradient
rT̂ locally enhanced temperature gradient
rxx, ryy, rzz principal thermoelastic stresses
rr, rh, rz principal thermoelastic stresses in cylindrical coordi-

nates
P variational functional
W dissipation potential for kinetic processes
_G
�

rate of change of Gibb’s free energy
j volumetric surface flux
As surface area of the pore
Ds surface diffusivity
V pore velocity
Caa, CVV dissipation rate coefficients
Q* heat of transport
FT driving force per unit volume due to temperature gradi-

ent
b shape factor for local temperature gradient enhance-

ment
I1 Eshelby coefficient
c interfacial energy densities
I shape functions for Gibbs free energy dependence

K shape functions for rate of change of Gibbs free energy
dependence

g ratio of grain boundary energy to pore free surface en-
ergy

r0 reference stress
R reference length (taken to be fuel pellet radius)
E elastic Youngs’ modulus of UO2

aT thermal expansion coefficient of UO2

m Poissons’ ratio of UO2

k dimensionless material groups defined by Eq. (14)
�r radial distance normalised with respect to reference

length
�r stress normalised with respect to reference stress
Vsphere velocity of a spherical pore
k stress ratio
T temperature
kT thermal conductivity of UO2
_q rate of heat generation in UO2 fuel rod per unit volume

Subscripts
T corresponding to thermal gradients
S corresponding to pore free surface interface
B corresponding to grain boundary interfaces
E corresponding to elastic strain

1124 S.P.A. Gill / International Journal of Heat and Mass Transfer 52 (2009) 1123–1131
evolution of a typical uranium dioxide fuel rod microstructure is
considered in Section 3 and discussed in Section 4 in the context
of the in-service observations made above.

2. The pore migration model

The three-dimensional pores are assumed to have an ellipsoidal
shape, as shown in Fig. 2. The volume of the pore is assumed to re-
main constant and its surface is defined in terms of spherical polar
coordinates

x ¼ a0a cos h cos /

y ¼ a0a cos h sin / for 0 � a <1
z ¼ a0a�2 sin h

ð1Þ
3. equiaxed 
grains

2. columnar 
grains

1. central 
void

4. unevolved 
 structure

5. stainless 
steel cladding

Fig. 1. Micrograph of the midservice microstructure in a UO2 fuel. There is a very
large void at the centre of the pellet due to the migration of pores to this region. Five
circular banded regions of different material behaviour have been identified. The
inset shows the columnar microstructure that has developed in region 2. Repro-
duced with permission of Blackwell Publishing, [6] V. Tikare, E.A., Holm, Simulation
of grain growth and pore migration in a thermal gradient, J. Am. Ceram. Soc. 81
(1998) 480-484. Copyright [1998] American Ceramic Society.
where �p 6 u 6p, �p=2 6 h 6 p=2;a is a shape parameter and a0 is
the radius of a spherical pore of an equivalent volume. The pore has
rotational symmetry about the z-axis and is described as oblate if
a > 1 and prolate if a < 1. The pore shape can therefore range from
a rod-like prolate crack (a = 0) to a sphere (a = 1) to a penny-shaped
crack (a =1). Some useful geometric properties of ellipsoids are
summarised in Appendix A. The pore is assumed to move with a
net velocity V in the x-direction due to a constant temperature gra-
dient rT and to gradients in the consequent thermoelastic stress
field. The major axes of the ellipsoids are assumed to be subjected
to a principal stress state such that there are no shear stresses,
the normal stress along the z-axis is rzz and the normal stresses
in the (x,y) plane, rxx = ryy, are equal.

The evolution of such a pore is now elaborated within the con-
text of a variational framework [7]. This integral method has the
advantage that the exact evolutionary morphology of the system
does not need to be known. The pore is assumed to evolve within
the class of ellipsoidal morphologies. If the system evolves within
this class of morphologies then the exact solution to the problem is
obtained. If it is not, then the best approximation to the exact re-
sult within the constraints of this class is found. In general we for-
mulate a variational functional

P ¼ Wþ _G ð2Þ

such that the actual kinematic field describing the evolution is the
minimal one, i.e. dP = 0. We assume that the pore evolves via diffu-
sion of atoms over its surface. The kinetics of the surface diffusion
process are encapsulated within the dissipation potential, W. The
rate of change of Gibb’s free energy, _G, provides the driving force
for this mechanism, where the dot indicates differentiation with re-
spect to time. Assuming the surface diffusivity is isotropic, the dis-
sipation potential can be written as

W ¼ 1
2

Z
As

j2

Ds
dS ð3Þ



Fig. 2. The ellipsoidal pore has its major axes orientated along the x, y and z-directions. The x and y-directions are assumed to be equivalent except for the fact that the pore is
assumed to move with a velocity V in the x-direction under the action of a temperature gradientrT and a stress field defined by rxx = ryy and rzz. The parameter a0 defines the
volume of the pore and the shape parameter, a, defines the eccentricity of the ellipsoid. The pore is assumed to be placed on a grain boundary in the z = 0 plane. The shape of
the pore is determined by the stress field, the free surface energy of the pore, the energy of the grain boundary and the mass transport kinetics. Material is assumed to
rearrange via surface diffusion at a rate determined by the material flux, j.
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where j is the volumetric surface flux, As is the surface area of the
pore, and Ds is the surface diffusivity, which is assumed to be con-
stant over the dimensions of the pore. The pore can evolve to either
change its shape ( _a–0) or position (V – 0) over time. The dissipa-
tion potential Eq. (3) can therefore be expressed in terms of the
two degrees-of-freedom as

W ¼ 2pa4
0

Dsa5 Caaa2
0 _a2 þ CVV V2

� �
ð4Þ

where the matrix components Caa(a) and CVV(a), defined by (B13),
are simply functions of the pore shape. As shown in Appendix B,
there is no interaction between shape change and the translational
motion of the pore.

The driving force term can be written as the sum of three
contributions

_G ¼ _UT þ _GS þ _GE ð5Þ

due to the temperature gradient (T), the interfacial energies (S) and
the elastic strain energy (E). The driving force due to the thermal
gradient is not due to a change in Gibbs free energy, as it is usually
associated with a change in the enthalpy of the system [8]. How-
ever, this is analogous to an electromigration force [9] and hence
can be treated as such. The force acting on a unit volume of material
in a local temperature gradient rT̂ is given by Nichols [10]

FT ¼ �Q �
rT̂
T

ð6Þ

where T is the absolute temperature and Q* is known as the heat of
transport. This is defined as the thermal energy released by a unit
volume of material as it moves down a temperature gradient [11].
This flow of heat in the x-direction is therefore associated with a
flux of material jx in the same direction, and hence the total driving
force is

_UT ¼
Z

As

FT jxdS ð7Þ

Assuming that FT is constant over the dimensions of the pore, it is
observed that it provides no net driving force for changing the
shape of the pore. The only non-zero contribution is therefore from
the translational motion of the pore and, using Eq. (C2),

_UT ¼ �
4p
3

bQ �
rT
2T

a3
0V ð8Þ

where the remote temperature gradient rT is locally enhanced by
the pore such that the local temperature gradient
rT̂ ¼ brT where bðaÞ > 1 is a dimensionless function of the pore
shape given by Carslaw and Jaegar [12] to be

bðaÞ ¼ 4p
4p� I1ðaÞ

ð9Þ

where I1(a) is an Eshelby coefficient, defined by Eq. (C3). The value
of b ranges from 2 to 1.5 to 1 as a goes from 0 to 1 to 1.

The driving forces for shape change are interfacial energy and
elastic strain energy. It has been observed in Fig. 1 that the grain
boundary orientation is predominantly radial in region 2, the re-
gion where significant pore migration is occurring. Hence, assum-
ing that the pore is symmetrically oriented along a radial grain
boundary in the z = 0 plane, as shown in Fig. 2, the total interfacial
energy is given by

GS ¼ 4pa2
0 cSISðaÞ �

1
4
cBa

2
� �

ð10Þ

where cS and cB are the interfacial energy densities of the free sur-
face of the pore and grain boundaries, respectively, and IS(a) is the
shape function defined by Eq. (C5). The driving force due to the
interfacial energy is therefore

_GS ¼ 4pa2
0cs KS � ga½ � _a ð11Þ

where g ¼ cB
2cS

and KS ¼ dIS
da. Physically it is expected that 0 < g < 1. If

g > 1 then the interfacial energy will drive a pore to become crack-
like in the initial pre-service microstructure which is not observed.

The thermoelastic stress field induced by a temperature gradi-
ent also generates gradients in the global stress field. It is assumed
here that the remote stress field local to the pore is approximately
uniform, given the small change in the stresses within the dimen-
sions of the pore. However, as the pore moves through the body it
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Fig. 3. The stress ratio, k ¼ rxx
rzz

, varies with radial position, �r, through the cylindrical
uranium dioxide fuel pellet. The equilibrium shape of a pore in a homogenous solid
is expected to be prolate (a < 1) for k > 1 and k < �1.41 and oblate (a > 1) for
�1.41 < k < 1 and spheroidal (a = 1) on the boundaries.
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will experience the changes in the global stress field associated
with the large changes in its position (relative to its own dimen-
sions). In this case the elastic strain energy in the body can change
due to a change in the pores shape and its position. The expression
for the strain energy is elaborated in Appendix C. Its time deriva-
tive is given by

_GE ¼ �
4pa3

0r2
0

3E
Ka

E
_aþ KV

E
V
R

� �
ð12Þ

where r0 is a reference stress, R is a reference length, E is the
Youngs’ modulus of the material, and the coefficients Ka

E and KV
E de-

pend on the pore shape and the solution for the global thermoelas-
tic stress field.

The variational functional Eq. (1) is now completely defined by
(4) and (12). The stationary solution occurs when

da
d�t
¼ a5

CaaðaÞ
Ka

Eða;�rÞ � kS KSðaÞ � ga½ �
� 	

d�r
d�t
¼ �a2

0
a5

CVV ðaÞ
KV

E ða;�rÞ þ kTbðaÞ
1
T

dT
d�r

� � ð13Þ

where the following dimensionless material parameters have been
introduced

kS ¼
3EcS

a0r2
0

kT ¼
EQ �

2r2
0

ð14Þ

Dimensionless time is related to real time by �t ¼ Dsr2
0

3Ea3
0

� �
t and �r ¼ r=R

is the non-dimensionalised position of the pore etc. The two rate
equations are coupled through their interdependence on the cur-
rent shape and position of the pore.

From Eq. (13) it can be seen that the velocity of a spherical pore
in the absence of thermoelastic effects is

Vsphere ¼
15DsQ

�

4a0T
dT
dr

ð15Þ

which predicts that a pore will move up a temperature gradient if
Q* > 0 and that a small pore will migrate faster than a large one.
Note that Q* is the heat of transport for uranium dioxide complexes
here. It is not to be confused with the heat of transport of oxygen
interstitials in uranium dioxide, which is known to be negative [13].

The stability of a spherical pore moving through a homoge-
neous medium (g = 0) to perturbations in its shape is governed
by Ka

Eð1;�rÞ � kSKSð1Þ. Now KSð1Þ ¼ 0 so it is expected that a pore
will be spherical if Ka

Eð1;�rÞ ¼ 0, become prolate if Ka
Eð1;�rÞ < 0 and

oblate if Ka
Eð1;�rÞ > 0. Assuming rzz–0, we can write this using

Eqs. (C8) and (C9) as

ð594� 630mÞ � ð306� 630mÞk� 288k2 ¼ 0 ð16Þ

where k ¼ rxx
rzz

. This has solutions k1 ¼ 1 and k2 ¼ ð35m�33Þ
16 ¼ �1:41 for

m = 0.3 [14]. Hence a void is expected to be a sphere if k has one of
these values, an oblate spheroid if k2 < k < 1 and a prolate spheroid
if 1 < k < k2. To make further progress it is necessary to consider the
exact nature of the global temperature field and consequent ther-
moelastic field that the pore resides within. This is the subject of
the next section.

3. The evolution of a pore in a uranium dioxide nuclear fuel rod

Pore migration in uranium dioxide nuclear fuel pellets has been
reported as an extreme problem, leading to the eventual structural
failure of the pellet [6]. This is due to the strong temperature gra-
dients that arise because of the low thermal conductivity of ura-
nium dioxide. The thermal conditions in such pellets have
recently been simulated by Ramirez et al. [4]. They consider a
cylindrical pellet of uranium dioxide of radius R = 4.3 mm which
is placed within a steel cladding of thickness 0.5 mm. There is a
small argon-filled gap between the cladding and the pellet. It is
predicted [4,15] that the temperature in the centre of this rela-
tively small pellet during operation is approximately 1150 K,
reducing to about 750 K at the perimeter. The steady-state axisym-
metric temperature distribution satisfies

1
r

d
dr
ðrkT TÞ ¼ � _q ð17Þ

where kT is the thermal conductivity and _q is the rate of heat gen-
eration per unit volume. For a comparable, simple analytic solution,
we assume that both of these quantities are constant, and then the
steady-state temperature profile is simply

TðrÞ ¼ 1
4

AðR2 � r2Þ þ 750 ð18Þ

where the value of A � 108 K=m2 equates to a thermal conductivity
of kT = 2W/K m for the assumed heat generation rate of
_q ¼ 2� 108 W=m3 [4]. This agrees well with results of Ramirez
et al. (see Fig. 3 in [4]) and gives a zero temperature gradient at
the centre of the pellet and a maximum temperature gradient of
�2 � 105 K/m at the perimeter. This is a conservative estimate com-
pared to the values of �4 � 105 K/m quoted by Ramirez et al. [4]
and �5.4 � 106 K/m by Michels and Poeppel [16] that arise in pel-
lets of larger radius. The associated thermoelastic field in cylindrical
coordinates (r,h,Z) is easily determined from Lamés equations [17]
for a pellet subjected to no external loading

rr ¼
AaT E

16
ðr2 � R2Þ

rh ¼
AaT E

16
ð3r2 � R2Þ

rZ ¼ m
AaT E

16
ð4r2 � 2R2Þ

ð19Þ

where aT is the thermal expansion coefficient of UO2 and plane
strain conditions have been assumed. Close inspection of these
terms shows that, for a typical Poisson ratio of m = 0.3 [14], the ra-
dial and longitudinal stress components are similar. Given that it
is the stress differences that play an important role, and that the
steel cladding could play an undetermined role in defining the ther-
moelastic boundary conditions, it is assumed here that the stress
state can be approximated by letting rZ = rr. The z-axis of an oblate
spheroid is expected to align along the direction of maximum ten-
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Fig. 4. Equilibrium pore shape, m, (21) as a function of radial position, �r, in the
uranium dioxide fuel pellet for (a) varying grain boundary energy, g, and (b) varying
pore size, kS. The high tensile stresses at the perimeter of the pellet favour crack-like
(m = 1) pores, although these are only suppressed if kS dominates. Radial high-
energy grain boundaries (large g) make it favourable for crack-like pores to form
near the centre of the pellet.
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sile stress (rh) [18] so at the microscale of the pore we associate the
hoop direction (h) with the z-axis in Fig. 2. The temperature gradi-
ent is in the radial direction (r) which is therefore associated with
the direction of motion of the pore, along the x-axis in Fig. 2. The
y-axis is identical to the x-axis in terms of the shape, and this is
therefore associated with the z-axis in cylindrical coordinates. The
stress state can therefore be expressed in dimensionless terms as
simply

�rxx ¼ �ryy ¼ ð�r2 � 1Þ
�rzz ¼ ð3�r2 � 1Þ

ð20Þ

where the radial distance and stresses have been written in a
dimensionless form, �r ¼ r

R and �rxx ¼ rxx
r0

etc., where the reference
stress has been taken to be r0 ¼ R2AaT E

16 . The stresses in the x and y-
directions are always negative (compressive) whereas the stress
in the z-direction changes from compressive at the centre to tensile
on the outside at �r ¼ 0:58. There is therefore a middle band of low
stress centered around �r ¼ 0:58 with a high compressive stress re-
gion at the centre and a high, predominantly tensile, stress region
at the perimeter. Fig. 3 shows the variation in the stress ratio,
k ¼ rxx

rzz
, though the pellet along with the equilibrium pore shape

classification predicted by (16). The critical radius at which a tran-
sition from prolate to oblate pores occurs at �r ¼

ffiffiffiffiffiffiffiffiffiffi
k2�1

3k2�1

q
¼ 0:68. The

exact equilibrium pore shape is now explored.

3.1. Equilibrium pore shape

Taking the reference length to be the pellet radius, R = 4.3 mm,
and using the material properties E = 2 � 1011 N/m2 [14] and
aT = 10�5 K�1 [19] for uranium dioxide and a typical pore radius
of a0 = 10�6 m [6], we have a reference stress of r0 = 200 MPa.
The surface energy density is estimated to be cs = 0.3 J/m2 [19]
which predicts that kS = 4.5 for a 1 lm pore. To explore the range
of shapes that a pore can adopt we introduce the shape parameter
[18]

m ¼ a2 � 1
a2 þ 1

ð21Þ

where �1 6m 6 1 as 0 6 a 61. The extreme cases are for a sphere
(m = 0), an oblate plate-like crack (m = 1) and a prolate rod-like
crack (m = �1). The equilibrium pore shape is given by the value
of a that satisfies da

d�t ¼ 0 in Eq. (13a). This is plotted in Fig. 4 as a
function of the pores radial position in the pellet. Fig. 4a shows
the effect of the grain boundary/surface energy ratio, g, on the equi-
librium pore shape. Firstly, for a pore in a homogenous solid (g = 0),
one finds that the pore is fairly equiaxed for pores at the centre of
the pellet (�r < 0:68) where prolate pores are preferred. This is be-
cause the elastic strain energy reduction is not a strong function
of shape for prolate spheroids. However, for the region where oblate
spheroids are predicted (�r > 0:68), the pores are expected to under-
go a very rapid transition into a crack-like morphology as oblate
cracks release large amounts of strain energy. The effect of placing
the pore on a grain boundary (g > 0) shows that the pore can further
reduce its interfacial energy by becoming more oblate. For high-en-
ergy grain boundaries (g > 0.3) one finds that this can drive pores at
the centre of the pellet to become crack-like as well as pores at the
perimeter. This is a graver problem, as these pores evolve quickly
due to the higher temperature at the centre, whereas the pores at
the lower temperature perimeter are not commonly observed to
evolve significantly (see Fig. 1). There is a region centred around
�r ¼ 0:58 where pores are not predicted to become crack-like under
any circumstances as the stress levels in this region are too low.

Note that the value of the dimensionless parameter, kS ¼ 3EcS
a0r2

0
,

is expected to be subject to some variation. The surface energy
and the pore size could easily vary by a factor of 2 either way,
and the reference stress could easily be increased by an order of
magnitude if larger pellets were considered. Therefore there is sig-
nificant possible variation in the value of this parameter. Fig. 4b
illustrates the effect of this parameter on the expected equilibrium
pore shape. Low values of kS < 1 mean that the strain energy dom-
inates the equilibrium morphology of the pore in accordance with
Fig. 3. Highly prolate pores are favoured towards the centre of the
pellet and there is a sharp transition to crack-like oblate pores near
the periphery with few equiaxed pores predicted at all. At high val-
ues of kS > 10 the interfacial energy dominates and suppresses the
formation of crack-like pores in favour of near-spheroidal ones.
This distinction is important. It suggests that, for a given situation,
small pores are more stable and likely to remain equiaxed. Large
pores may evolve more slowly but they are more likely to evolve
into dangerous crack-like features.

3.2. Kinetics of pore migration and shape change

The equilibrium shape of pores was considered in the previous
subsection. However, a pore may not attain its equilibrium shape
as its behaviour is governed by its kinetics as well as its thermody-
namics. In this subsection the kinetics of pore migration and shape
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change are considered by solving the combined system of equa-
tions (13). The kinetics are strongly dependent on the heat of trans-
port parameter, Q*. The density of UO2 is 10,970 kg/m3 and it
weighs 0.270 kg/mol so, using previous parameters, we can write
kT = 100Q* where Q* is given in kJ/mol. The exact value of the heat
of transport of uranium dioxide is not known but data on the heat
of transport of oxygen in uranium dioxide suggests that it will be
very sensitive to the exact stoichiometry of the compound at a par-
ticular position [4]. Therefore it is not possible to estimate its value
although it is expected to be in the range of 0 < Q* < 100 kJ/mol.
Negative values are not expected given that pores are observed
to migrate up a temperature gradient to the centre of a pellet. It
is found that pores have time to adopt their equilibrium shape if
the migrational driving force (effectively determined by the magni-
tude of Q*) is small compared to the forces driving shape change.
For a high migration force of Q* = 100 kJ/mol the pore does not nec-
essarily reach its equilibrium morphology. However, for Q* <10 kJ/
mol pores evolve very close to their equilibrium shape. Some pore
trajectories are shown in Fig. 5 for four different cases where the
pore does not have sufficient time to reach its equilibrium shape
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Fig. 5. Pore trajectories for different material parameters for kS = 4.5 and (a) homogene
boundary (g = 0.9) and (d) for kS = 0.5 with g = 0.5. Nine spheroidal pores are initially pla
(13). The equilibrium pore shapes are a function of position are shown as a red dotted line
force such that some pores do not attain their equilibrium shape. The thermal gradient dr
them to the centre of the pellet. The driving force due to the thermoelastic stress field do
for �r < 0:58 and towards the perimeter for �r > 0:58.
everywhere. Initially nine spheroidal pores are placed at positions
�r ¼ n=10 where n = 1, . . . , 9 on the m = 0 axis. The evolution of the
pores shape and position are shown. The equilibrium predictions of
Fig. 4 are also shown as dotted lines for comparison. The first three
cases illustrate the expected response for the best-guess case of
kS = 4.5 and Q* = 100 kJ/mol. Fig. 5a illustrates pore evolution in a
homogeneous pellet (g = 0). All the pores move towards the centre
of the pellet (�r ¼ 0). The pore at �r ¼ 0:9 does not attain its equilib-
rium shape of an oblate crack. It migrates towards the centre of the
pellet whilst it is elongating and reaches a position in the pellet
where its equilibrium shape is that of a near-spheroid before it be-
comes crack-like. It is then stable and proceeds along the same
equilibrium trajectory as the other pores. Note that time proceeds
non-linearly along the trajectories. This is partly because the pore
velocity depends on the pore shape, but principally because the
temperature increases towards the centre of the pellet so surface
diffusion is very much faster there. The case in Fig. 5a therefore
predicts that pores will remain approximately spheroidal in the ab-
sence of grain boundaries and will move with a velocity approxi-
mately given by Eq. (15). Pores on radial grain boundaries,
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ous medium (g = 0), (b) low-energy grain boundary (g = 0.5), (c) high-energy grain
ce at �r ¼ 0:1;0:2; . . . ;0:9 on the m = 0 axis. These are allowed to evolve according to
. The expected heat of transport Q* = 100 kJ/mol provides a strong migratory driving
iving force dominates the migration of prolate and near-spheroidal pores and drives
minates for crack-like pores (m = 1). This drives crack-like pores towards the centre
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however, will not in general remain spheroidal as shown in Fig. 5b
and c. For the case of a low-energy grain boundary (g = 0.5), shown
in Fig. 5b, the majority of pores get close to their equilibrium shape
as the move through the pellet towards the centre. However, the
sharp transition from a near-spheroidal pore to an oblate crack-like
pore at �r ¼ 0:25 is smoothed out due to the kinetics of the shape
change process. The pore starting at �r ¼ 0:9 initially is of interest
as it moves inwards as its shape evolves to become more crack-like
but then changes direction and moves outwards towards the edge
of the pellet once it reaches a crack-like morphology. This indicates
a change in the mechanism for migration of this pore. In general
the thermal gradient driving force overwhelmingly dominates
the thermoelastic driving force for near-spheroidal pores if
Q* > 0.1 kJ/mol as expected. The variation in velocity with shape
for prolate or near-spheroidal pores (a < 2, say) is not greatly sig-
nificant, especially compared to the large change in the surface dif-
fusivity with temperature through the pellet. However, this is not
the case for high-aspect ratio oblate pores. In the limit of large a,
using the limiting expressions in Appendix B and Appendix C in
(13), one finds that the translational velocity of a pore can be
approximated by

da
d�t
¼ 12

6
p
ð1� m2Þ�r2

zza� kSð1� gÞ
� �

a3

d�r
d�t
¼ 16�a2

0
4
p
ð1� m2Þ�rzz

d�rzz

d�r
a3 þ kT

1
T

dT
d�r

� �
a2

ð22Þ

where the first term on the right hand side is the driving force to the
thermoelastic field and the second is that due to the thermal gradi-
ent. Firstly one notes that the velocity and rate of shape change in-
crease very rapidly as a5 and a4, respectively, as the oblate pore
becomes more crack-like. Secondly, the elastic driving force rapidly
increases with a but the thermal driving force does not. Therefore
there will be some critical value for the pore shape for which the
thermoelastic effects dominate the thermal effects. For the temper-
ature field considered in this paper, the extremes in the stress field
occur at the centre (�r ¼ 0) and perimeter (�r ¼ 1) of the pellet. At
these points one finds that the two driving forces are of approxi-
mately equal magnitude when a � 0:5k1=3

T . This occurs when
a = 2.5 when Q* = 1 kJ/mol, a = 5 when Q* = 10 kJ/mol and a = 10
when Q* = 100 kJ/mol. Hence the thermoelastic effect is significant
for oblate pores with aspect ratios of this order and above. Note that
the thermal field always acts to drive pores to the centre. The elastic
field acts to drive pores towards the centre only for �r < 0:58 and it
drives pores out of the pellet towards the perimeter when �r > 0:58.
This is the explanation for the observations for the �r ¼ 0:9 pore in
Fig. 5b. It moves towards the centre of the pellet whilst it is fairly
round under the influence of the thermal gradient driving force
but, as its shape evolves towards a crack, the thermoelastic driving
force begins to dominate and the pore changes direction to move to
the perimeter of the pellet. Although the evolution of this pore is
probably only of academic interest, as it is unlikely to evolve in
the low temperature perimeter region, the other crack-like pores
(at the centre of the pellet) will evolve rapidly and the dominant
thermoelastic driving force will accelerate their migration to the
centre of the pellet. If the crack-like pores are weakly developed
then this may result in their subsequent coalescence into the large
central void and therefore render them less hazardous for further
crack propagation. However, if the pores have developed into exten-
sive crack-like features by this time they could be unstable. The ra-
tio of crack propagation rate, a0 _a, to pore migration rate, _r, for large
a is given by (22) to be a0 _a

_r ¼
9�rzz
8�a0a

d�rzz
d�r

� 	�1
. For a pore on the edge of

the central void (�r ¼ 0:3) this predicts that a0 _a
_r � 1

�a0a
. Although a is

large, this ratio will be greater than one (as a > �a0 corresponds to
a crack that exceeds the dimensions of the pellet). Therefore it is
highly possible that crack-like pores exist for which the crack prop-
agation rate will exceed the migration rate. These crack-like pores
will continue to progress through the body until they reach a criti-
cal length whereby fast fracture occurs. Fig. 5c shows that high-en-
ergy grain boundaries (g = 0.9) increase the possibility of this
scenario. This case is of particular interest as the pore starting at
�r ¼ 0:8 initially becomes elongated, then contracts as it moves into
a lower stress region, and then elongates again as it enters the cen-
tral high-stress region. The example in Fig. 5d illustrates some of
the other phenomena that can be observed. This is for a large pore
on a low-energy grain boundary under a strong thermal gradient
driving force. The pores in the middle band (0:3 < �r < 0:7) move to-
wards their equilibrium prolate shape. Upon reaching the central
region �r < 0:2 they would be driven to become more crack-like if
they were spheroidal (as in the case of the pores starting as
�r ¼ 0:1 and 0:2). However, as they are prolate at that point they
see another local energy minima and move towards an increasingly
prolate shape rather than an oblate one. As in Fig. 5c, the pore at
�r ¼ 0:8 experiences a temporary shape change reversal as it pro-
ceeds through the low stress region.

4. Conclusions

The picture of pore migration constructed in Section 3 is consis-
tent with the microstructural observations of Section 1 and Fig. 1
[6]. The basic picture is that pores migrate up the temperature gra-
dient into the centre of the rod and coalesce to form a large void
along the length of the rod. This was previously understood and
recognised. However, the evolution of the pore shape, the effect
of the thermoelastic field and the interactions between pores and
grain boundaries have not been previously considered. These all
add more detail to the picture. Firstly, it seems likely from the for-
mation of a columnar microstructure in region 2 of Fig. 1, that a
large number of pores within the evolving medium interact with
grain boundaries. If the grain boundaries lie normal to the migra-
tion path of the pores, then the pores can get trapped on the grain
boundaries. The migration force causes the pores to drag these
grain boundaries along with them. They may eventually escape
the grain boundary but a succession of pores migrating past will
continue to cause the elongation of the grains. This results in the
formation of lenticular pores at the end of long radial grains. These
grain boundaries reduce the mobility of pores and hence are of less
interest than boundaries tangential to the direction of pore migra-
tion. They are, however, of significance as they produce large num-
bers of these highly-orientated radial boundaries. The behaviour of
pores situated on these radial boundaries has been considered in
this paper. They are important because they are the only favour-
able sites within the pore migration region (region 2) for the evo-
lution of near-spheroidal pores into penny-shaped crack-like
features. This anisotropy in pore shape is favoured as it reduces
the area/energy of the grain boundary interface and because it is
an effective shape for allowing the thermoelastic stress field to
do work. Crack-like pores on radial grain boundaries are also
highly mobile. The driving forces on these pores due to the thermal
gradient and the thermoelastic stress field both act in the same
direction and are of comparable magnitudes. Small pores are less
likely to become elongated and crack-like than larger pores. How-
ever, it is predicted that small pores will coalesce into large pores
during the migration process [6]. It is predicted that large crack-
like pores have time to form on high-energy grain boundaries in re-
gion 2 before they are predicted to coalesce with the central void of
region 1. In this case it is expected that a large number of radial
crack-like features will emanate from the central void. This is ob-
served in Fig. 1, where a number of these crack-like features have
been found to be of sufficient length to initiate fast fracture.

In summary, a model has been proposed for the evolution of ellip-
soidal pores by surface diffusion in a nuclear fuel rod under the influ-
ence of large temperature gradients and the associated thermoelastic
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stress field. Both of these influences affect the migration velocity of a
pore, as well as its shape. The shape of the pore is determined by com-
petition between the stress field, the interfacial energies of the pore
and grain boundaries, and the mass transport kinetics. It is found that
crack-like pores are expected to be observed on radial grain bound-
aries for the estimated material parameters. It is predicted that these
crack-like pores lead to the eventual structural failure of the compo-
nent. The temperature gradient is the dominant driving force for the
migration of near-spheroidal pores, whereas the stress field is the
dominant driving force for crack-like pores.

Appendix A. Geometrical quantities for ellipsoids

Given a position on the surface, x, from (1), the two orthogonal
tangent vectors to the pore surface are given by

sh ¼
@x
@h
¼ a0a � sin h cos /;� sin h sin /;a�3 cos h

� �
s/ ¼

@x
@/
¼ a0a � cos h sin /; cos h cos /;0½ �

ðA1Þ

which are directed along the u = constant and h = constant lines,
respectively. They have magnitudes

jshj ¼ a0a�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hþ a6 sin2 h

q
js/j ¼ a0a cos h

ðA2Þ

The unit outward normal to the surface is given by

n ¼
sh � s/

� 	
jsh � s/j

¼
cos h cos /; cos h sin /;a3 sin h
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hþ a6 sin2 h

p ðA3Þ

where jsh � s/j ¼ jshks/j for orthogonal vectors. The area of a surface
element is

dS ¼ jsh � s/jdhd/ ¼ a2
0a
�1 cos h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hþ a6 sin2 h

q
dhd/ ðA4Þ

Flux is constrained to the x–z plane for translation of the pore. The
unit tangent and outward normal to the surface in this plane are
therefore

ty ¼
½�a3 sin h; 0; cos h cos /�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 h cos2 /þ a6 sin2 h
q ny ¼

½cos h cos /;0;�a3 sin h�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 h cos2 /þ a6 sin2 h

q
ðA5Þ
Appendix B. The dissipation potential

The two components of the surface flux field in spherical polars,
jh and ju, are orientated along the u = constant and h = constant
lines, respectively. They can be expressed as

jh ¼ jah þ jV
h

j/ ¼ ja/ þ jV
/

ðB1Þ

where the superscripts indicate fluxes associated with either shape
change (a) or translation (V). By considering the flux into and out of
a surface element, the surface flux is related to the normal velocity
of the surface vn by

vn ¼ �
1

jshjjs/j
@ðjs/jjhÞ
@h

þ
@ðjshjj/Þ
@/

� �
ðB2Þ

where the lengths jshj and js/j are given in Appendix A. The inward
normal velocity of the pore surface has components due to shape
change and translation so

vn ¼ va
n þ vV

n ðB3Þ
where

va
n ¼ � _x:n ¼ �a0 _a

ðcos2 h� 2 sin2 hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hþ a6 sin2 h

p ðB4Þ

using (1) and Eq. (A3), and

vV
n ¼ �½V ; 0;0�:n ¼ �

V cos h cos /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hþ a6 sin2 h

p ðB5Þ

For shape change, the flux field is symmetric about the z-axis so
ja/ ¼ 0. In this case Eq. (B2) can be rearranged to give

jah ðh;/Þ ¼ �
1
js/j

Z h

0
jshjjs/jvndh ¼ a2

0 _a
2a2 sin 2h ðB6Þ

For translational motion, the flux field is confined to the x–z plane
and hence the non-zero flux component is written as jV

xzðh;/Þ. This
can be written in terms of the spherical polar components as

jV
h ¼ jV

xzty �
sh

jshj
¼ jV

xz cos /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hþ a6 sin2 h

cos2 h cos2 /þ a6 sin2 h

s

jV
/ ¼ jV

xzty:
s/

js/j
¼ jV

xz
a3 sin h sin /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 h cos2 /þ a6 sin2 h
q ðB7Þ

The fluxes can therefore be related to the motion of the surface by
writing Eq. (B2) in the form

vn ¼ �
1

jshjjs/j
@ðf cos h cos /Þ

@h
þ @ðf sin h sin /Þ

@/

� �
ðB8Þ

where the variable f ¼ a0a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 hþa6 sin2 h
cos2 h cos2 /þa6 sin2 h

q
jV
xz has been introduced.

When constrained to this y = constant plane, the angles are related
by dy = 0 such that du = tanh tanudh from (1). The above can there-
fore be simplified to give

f ¼ �
Z h

0

vnjshjjs/j
2 cos h cos /

dh ¼ a2
0V

2a
sin h ðB9Þ

One can therefore write

jV
xzðh;/Þ ¼

a0V
2a2 sin h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 h cos2 /þ a6 sin2 h

cos2 hþ a6 sin2 h

s
ðB10Þ

The dissipation potential (3) can now be written as

W ¼ 1
2

Z
As

j2

Ds
dS ¼ 1

2Ds

Z
As

j2
h þ j2

/

� �
dS

¼ 1
2Ds

Z
As

ðjah Þ
2 þ 2jah jV

h þ ðjxzÞ
2

h i
dS ðB11Þ

which can be expressed in the form

W ¼ 2pa4
0

Dsa5 a0 _a V½ �
Caa CaV

CaV CVV

� �
a0 _a½ � ðB12Þ

where

Caa ¼
a5

4pa6
0

_a2

Z
As

ðjah Þ
2dS ¼

Z p
2

0
sin2 h cos3 h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hþ a6 sin2 h

q
dh

CaV ¼
a5

4pa5
0

_aV

Z
As

jah jV
h dS ¼ 0

CVV ¼
a5

4pa4
0V2

Z
As

ðjV
xzÞ

2dS ¼ 1
8

Z p
2

0
sin2 h cos h

ðcos2 hþ 2a6 sin2 hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hþ a6 sin2 h

p dh

ðB13Þ

The result CaV = 0 indicates that there is no dissipative interac-
tion between shape change and translational movement. The
non-zero coefficients Caa and CVV have analytical expressions but
are too unwieldy to be reproduced here. They are easier calculated
numerically but the following limiting values are useful:
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Caa(0) = p/32, Cvv(0) = p/128 Caa(1) = 2/15, Cvv(1) = 1/15, and in the
limit of a ?1 one finds that Caa(1) ? 1/12a3 and Cvv(1) ? 1/
16a3.

Appendix C. Driving forces

The flux in the x-direction is given by

jx ¼ jV
xzty þ jah

sh

jshj

� �
� ½1;0; 0� ðC1Þ

where the variables are defined by Eqs. (A1), (A2), (A5), (B6), and
(B10). The non-zero contribution to the total flux over the surface
(due to jV

xz) is thereforeZ
As

jxdS ¼ 2pa3
0

3
V ðC2Þ

The Eshelby coefficient used in the calculation of b (9) is given
for an oblate spheroid by Mura [20]

I1ðaÞ ¼

2p
ða6�1Þ

3
2

a6 cos�1ða�3Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a6 � 1
ph i

if a > 1

4p
3 if a ¼ 1

2p
ð1�a6Þ

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a6
p

� a6 cosh�1ða�3Þ
h i

if a < 1

8>>>><
>>>>:

ðC3Þ

For a constant surface energy density cS, the surface energy of a
pore is given by

GS ¼
Z

As

csdS ¼ 4pa2
0csISðaÞ ðC4Þ

where, from (A4),

ISðaÞ ¼

a2

2 þ
lnð
ffiffiffiffiffiffiffiffi
a6�1
p

þa3Þ
2a
ffiffiffiffiffiffiffiffi
a6�1
p if a > 1

1 if a ¼ 1
a2

2 þ 1
8a
ffiffiffiffiffiffiffiffi
1�a6
p p� 2 tan�1 2a6�1

2a3
ffiffiffiffiffiffiffiffi
1�a6
p

� �h i
if a < 1

8>><
>>: ðC5Þ

The elastic strain energy of an isotropically elastic body contain-
ing an ellipsoidal inclusion subject to a uniform remote stress field
has been calculated by Eshelby [21] and summarised by Mura [20].
Sun et al. [18] have written the solution for the reduced case of an
oblate spheroid subjected to the principal stresses rxx = ryy and rzz.
If we assume that the local stress state over the dimensions of the
pore is unaffected by any gradients in the stress field, the change in
energy due to the introduction of the pore is

GE ¼ �
4pa3

0

3E
r2

xxC11 þ rxxrzzðC13 þ
1
2

C31Þ þ
1
2
r2

zzC33

� �
ðC6Þ

where E is the Youngs’ modulus of the material, and the dimension-
less coefficients Cij are functions of the Poisson ratio m and the pore
shape a and are given in Appendix A of Sun et al. [18]. Useful lim-
iting expressions for the elastic shape coefficients are
C11 ¼ 12ð1�mÞ

ð7�5mÞ ; C13 ¼ 1
2 C31 ¼ � 3ð1þ5mÞð1�mÞ

2ð7�5mÞ and C33 ¼ 3ð9þ5mÞð1�mÞ
2ð7�5mÞ for a

spheroid (a = 1). For an oblate crack-like spheroid (a ?1) the coef-
ficients are all of order one except for C33 ! 4

p ð1� m2Þa3 which
dominates. For a prolate crack-like spheroid (a = 0) the coefficients
are simply C11 ¼ 2;C13 ¼ 1

2C31 ¼ �m and C33 ¼ 1.
Globally we expect the stress field to be a function of the pores

position in the body, r, and hence the rate of change of the elastic
strain energy depends on both the translational velocity and rate of
shape change of the pore such that
_GE ¼ �
4pa3

0r2
0

3E
Ka

E
_aþ KV

E
V
R

� �
ðC7Þ

where r0 is a reference stress, rxx ¼ rxx=r0; r ¼ r=R, where R is a
reference length and the dimensionless coefficients are

Ka
E ¼ r2

xx
dC11

da
þ rxxrzz

dC13

da
þ 1=2

dC31

da

� �
þ 1=2r2

zz
dC33

da

KV
E ¼ 2C11rxx þ ðC13 þ 1=2C31Þrzz½ �drxx

dr

þ ½ðC13 þ 1=2C31Þrxx þ C33rzz�
drzz

dr

ðC8Þ

To determine the stability of a spherical void it is useful to know
that

dC11

da
¼ �288D

dC13

da
¼ 1

2
dC31

da
¼ ð153� 315mÞD

dC33

da
¼ 4ð297� 315mÞD ðC9Þ

for a = 1, where D ¼ ð1�m2Þ
343�490mþ175m2.

References

[1] Wu-Shung Fu, Hsin-Chien Huang, Effects of a random porosity model on heat
transfer performance of porous media, Int. J. Heat Mass Transfer 42 (1999) 13–
25.

[2] O.G. Martynenko, N.V. Pavlyukevich, O.S. Rabinovich, M. Kaviany, Principles
of heat transfer in porous media, Int. J. Heat Mass Transfer 36 (1993) 1715–
1716.

[3] M. Inoue, K. Abe, I. Sato, A method for determining an effective porosity
correction factor for thermal conductivity in fast reactor uranium–plutonium
oxide fuel pellets, J. Nucl. Mater. 281 (2000) 117–128.

[4] J.C. Ramirez, M. Stan, P. Cristea, Simulations of heat and oxygen diffusion in
UO2 nuclear fuel rods, J. Nucl. Mater. 359 (2006) 174–184.

[5] Yu.I. Dimitrienko, Thermal stresses and heat-mass transfer in ablating
composite materials, Int. J. Heat Mass Transfer 38 (1995) 139–146.

[6] V. Tikare, E.A. Holm, Simulation of grain growth and pore migration in a
thermal gradient, J. Am. Ceram. Soc. 81 (1998) 480–484.

[7] A.C.F. Cocks, S.P.A. Gill, J. Pan, Modelling of microstructural evolution, Adv.
Appl. Mech. 36 (1999) 81–162.

[8] P.G. Shewmon, Diffusion in Solids, J. Williams, Jenks, OK, 1983. pp. 231–239.
[9] L. Xia, A.F. Bower, Z. Sou, C.F. Shih, A finite element analysis of the motion and

evolution of voids due to strain and electromigration-induced surface
diffusion, J. Mech. Phys. Solids 45 (1997) 1473–1493.

[10] F.A. Nichols, Kinetics of diffusional motion of pores in solids, J. Nucl. Mater. 30
(1969) 143–165.

[11] K.G. Denbigh, The thermodynamics of the steady state, in: Methuen
Monograph on Chemical Subjects, Wiley, 1951, pp. 54–64.

[12] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, Clarendon Press, Oxford,
1973. pp. 176–178.

[13] C. Sari, G. Schumacher, Oxygen redistribution in fast reactor oxide fuel, J. Nucl.
Mater. 61 (1976) 192–202.

[14] R.G. Munro, Elastic Moduli Data for Polycrystalline Ceramics, in NISTIR 6853.
National Institute of Standards and Technology, Gaithersburg, Maryland
20899, 2002.

[15] A.C. Rapier, T.M. Jones, J.E. McIintosh, The thermal conductance of uranium
dioxide/stainless steel interfaces, Int. J. Heat Mass Transfer 6 (1963) 397–
416.

[16] L.C. Michels, R.B. Poeppel, In-pile migration of fission product inclusions in
mixed-oxide fuels, J. Appl. Phys. 44 (1973) 1003–1008.

[17] S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, third ed., McGraw-Hill, New
York, 1970. pp. 136–140.

[18] B. Sun, Z. Suo, A.G. Evans, Emergence of cracks by mass transport in elastic
crystals stressed at high temperatures, J. Mech. Phys. Solids 42 (1994) 1653–
1677.

[19] J.M. Fink, Thermophysical properties of uranium dioxide, J. Nucl. Mater. 279
(2000) 1–18.

[20] T. Mura, Micromechanics of Defects in Solids, second ed., Martinus Nijhoff,
Dordrecht, 1987. pp. 74–85.

[21] J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion
and related problems, Proc. R. Soc. A 241 (1957) 376–396.


	Pore migration under high temperature and stress gradients
	Introduction
	The pore migration model
	The evolution of a pore in a uranium dioxide nuclear fuel rod
	Equilibrium pore shape
	Kinetics of pore migration and shape change

	Conclusions
	Geometrical quantities for ellipsoids
	The dissipation potential
	Driving forces
	References


